Exercise 37

For the following exercises, solve the equations over the complex numbers.

$$
x(x-4)=20
$$

Solution

Rewrite the equation in standard form.

$$
\begin{gathered}
x^{2}-4 x=20 \\
x^{2}-4 x-20=0
\end{gathered}
$$

The two terms with x, x^{2} and $4 x$, cannot be combined, so it's necessary to complete the square to solve for x. Recall the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=-4$, which means $B=-2$ and $B^{2}=4$. Add and subtract 4 from the left side and apply the identity.

$$
\begin{gathered}
\left(x^{2}-4 x+4\right)-20-4=0 \\
(x+(-2))^{2}-24=0 \\
(x-2)^{2}-24=0
\end{gathered}
$$

Now that x appears in only one place, it can be solved for. Add 24 to both sides.

$$
(x-2)^{2}=24
$$

Take the square root of both sides.

$$
\begin{aligned}
\sqrt{(x-2)^{2}} & =\sqrt{24} \\
& =\sqrt{4(6)} \\
& =\sqrt{4} \sqrt{6} \\
& =2 \sqrt{6}
\end{aligned}
$$

Since there's an even power under an even root, and the result is to an odd power, an absolute value sign is needed around $x-2$.

$$
|x-2|=2 \sqrt{6}
$$

Remove the absolute value sign by placing \pm on the right side.

$$
x-2= \pm 2 \sqrt{6}
$$

Add 2 to both sides.

$$
x=2 \pm 2 \sqrt{6}
$$

Therefore, $x=\{2-2 \sqrt{6}, 2+2 \sqrt{6}\}$.

